Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Bioorg Med Chem ; 67: 116838, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1872946

ABSTRACT

Honokiol, isolated from a traditional Chinese medicine (TCM) Magnolia officinalis, is a biphenolic compound with several biological activities. To improve and broaden its biological activity, herein, two series of honokiol thioethers bearing 1,3,4-oxadiazole moieties were prepared and assessed for their α-glucosidase and SARS-CoV-2 entry inhibitory activities. Among all the honokiol thioethers, compound 7l exhibited the strongest α-glucosidase inhibitory effect with an IC50 value of 18.9 ± 2.3 µM, which was superior to the reference drug acarbose (IC50 = 24.4 ± 0.3 µM). Some interesting results of structure-activity relationships (SARs) have also been discussed. Enzyme kinetic study demonstrated that 7l was a noncompetitive α-glucosidase inhibitor, which was further supported by the results of molecular docking. Moreover, honokiol thioethers 7e, 9a, 9e, and 9r exhibited potent antiviral activity against SARS-CoV-2 pseudovirus entering into HEK-293 T-ACE2h. Especially 9a displayed the strongest inhibitory activity against SARS-CoV-2 pseudovirus entry with an IC50 value of 16.96 ± 2.45 µM, which was lower than the positive control Evans blue (21.98 ± 1.98 µM). Biolayer interferometry (BLI) binding and docking studies suggested that 9a and 9r may effectively block the binding of SARS-CoV-2 to the host ACE2 receptor through dual recognition of SARS-CoV-2 spike RBD and human ACE2. Additionally, the potent honokiol thioethers 7l, 9a, and 9r displayed relatively no cytotoxicity to normal cells (LO2). These findings will provide a theoretical basis for the discovery of honokiol derivatives as potential both α-glucosidase and SARS-CoV-2 entry inhibitors.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Biphenyl Compounds , HEK293 Cells , Humans , Lignans , Molecular Docking Simulation , Oxadiazoles , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry , Sulfides , alpha-Glucosidases/metabolism
2.
Agriculture ; 11(12):1230, 2021.
Article in English | ProQuest Central | ID: covidwho-1598414

ABSTRACT

This paper aims to identify effective mechanisms for government poverty alleviation measures based on the livelihood sustainability of farm households in Southern Shaanxi province, China. The paper utilizes data from 414 farm households, collected through field observations and in-depth interviews in 24 rural communes in Qinba Mountain Area of Shaanxi province, China. Using theoretical research methods and employing the sustainable livelihood approach (SLA) framework, this paper analyzes poverty alleviation measures as well as the impact of varied capital availability on sustainable livelihood. The study shows that developing local industries and governmental financial support improve the sustainable livelihood of farmers and eradicate absolute poverty. The findings of this study further indicate that there is a positive correlation between poverty alleviation measures and natural and social capital for sustainable livelihood. The paper provides empirical and quantitative evidence on alleviation of poverty, and the findings will help improve the sustainability of livelihood capability of farming households. This study suggests impactful approaches to stabilizing mechanisms for poverty alleviation in rural areas over the longer term.

SELECTION OF CITATIONS
SEARCH DETAIL